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Introduction

Context:

• DA often relies on forecast error covariances.

• This matrix can be sampled from an ensemble of forecasts.

• Sampling noise arises because of the limited ensemble size.

• Question: how to �lter this sampling noise?

Usual methods:

• Covariance localization
→ tapering with a localization matrix

• Covariance hybridization
→ linear combination with a static covariance matrix
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Introduction

Questions:

1. Can localization and hybridization be considered together?

2. Is it possible to optimize localization and hybridization
coe�cients objectively and simultaneously?

The method should:

• use data from the ensemble only.

• be a�ordable for high-dimensional systems.

3. Is hybridization always improving the accuracy of forecast
error covariances?
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Linear �ltering of sample covariances

An ensemble of N forecasts {x̃b
p
} is used to sample B̃:

B̃ =
1

N−1

N

∑
p=1

δ x̃b
(
δ x̃b

)T

where: δ x̃b
p

= x̃b
p
−〈x̃b〉 and 〈x̃b〉=

1

N

N

∑
p=1

x̃b
p

Asymptotic behavior: if N → ∞ , then B̃→ B̃?

In practice, N < ∞ ⇒ sampling noise B̃e = B̃− B̃?

Theory of sampling error:

E
[
B̃2
ij

]
=

N(N−3)

(N−1)2
E
[
B̃?2
ij

]
− 1

(N−1)(N−2)
E
[
B̃
ii
B̃
jj

]
+

N2

(N−1)2(N−2)
E
[
Ξ̃
ijij

]
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Linear �ltering of sample covariances

Localization by L (Schur product)

Covariance matrix

B̂ = L◦ B̃

Increment

δxe =
1√
N−1

N

∑
p=1

δ x̃b
p
◦
(
L1/2vα

p

)
Localization by L + hybridization with B

Covariance matrix

Increment

δx = β
e

δxe + β
c B1/2vc

Localization + hybridization = linear �ltering of B̃

Lh and β
c have to be optimized together
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Joint optimization: step 1

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

e = E
[
‖ L◦ B̃︸ ︷︷ ︸

Localized B̃

− B̃?︸︷︷︸
Asymptotic B̃

‖2
]

(1)

Light assumptions:

• The unbiased sampling noise B̃e = B̃− B̃? is not correlated
with the asymptotic sample covariance matrix B̃?.

• The two random processes generating the asymptotic B̃? and
the sample distribution are independent.

An explicit formula for the optimal localization L is given in
Ménétrier et al. 2015 (Montly Weather Review).
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Joint optimization: step 1

This formula of optimal localization L involves:

• the ensemble size N

• the sample covariance B̃

• the sample fourth-order centered moment Ξ̃

L
ij

=
(N−1)2

N(N−3)

− N

(N−2)(N−3)

E
[
Ξ̃
ijij

]
E
[
B̃2
ij

]
+

N−1

N(N−2)(N−3)

E
[
B̃
ii
B̃
jj

]
E
[
B̃2
ij

]
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Joint optimization: step 2

Step 2: optimizing localization and hybridization together

Goal: to minimize the expected quadratic error

eh = E
[
‖ Lh ◦ B̃+ (β

c)2B︸ ︷︷ ︸
Localized / hybridized B̃

− B̃?︸︷︷︸
Asymptotic B̃

‖2
]

Same assumptions as before.

Result of the minimization: a linear system in Lh and (β
c)2

Lh
ij

= L
ij
−

E
[
B̃
ij

]
E
[
B̃2
ij

]B
ij

(β
c)2 (2a)

(β
c)2 =

∑
ij
B

ij

(
1−Lh

ij

)
E
[
B̃
ij

]
∑

ij
B2

ij

(2b)
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Hybridization bene�ts

Comparison of:

• B̂ = L◦ B̃, with an optimal L minimizing e

• B̂h = Lh ◦ B̃+ (β
c)2 B, with optimal Lh and β

c minimizing eh

We can show that:

eh− e =−(β
c)2∑

ij

B2
ij
Var
(
B̃
ij

)
E
[
B̃2
ij

]︸ ︷︷ ︸
≤0

(3)

With optimal parameters, whatever the static B:
Localization + hybridization is better than localization alone
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Practical implementation

An ergodicity assumption is required to estimate the statistical
expectations E in practice:

• whole domain average,

• local average,

• scale dependent average,

• etc.

→ This assumption is independent from earlier theory.

Localization Lh and hybridization coe�cient β
c can be computed:

• from the ensemble at each assimilation window,

• climatologically from an archive of ensembles.
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Experimental setup

• WRF-ARW model, large domain, 25 km-resolution, 40 levels

• Initial conditions randomized from a homogeneous static B

• Reference and test ensembles (1000 / 100 members)

• Forecast ranges: 12, 24, 36 and 48 h

Temperature at level 7 (∼ 1 km above ground), 48 h-range forecasts

Standard-deviation (K) Correlations functions
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• Expected quadratic errors e and e
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→ Hybridization with B improves the accuracy of the
forecast error covariance matrix
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Conclusions

1. Localization and hybridization are two joint aspects of the
linear �ltering of sample covariances.

2. We have developed a new objective method to optimize
localization and hybridization coe�cients together:

• Based on properties of the ensemble only

• A�ordable for high-dimensional systems

• Tackling the sampling noise issue only

3. If done optimally, hybridization always improves the accuracy
of forecast error covariances.

Ménétrier, B. and T. Auligné: Optimized Localization and
Hybridization to Filter Ensemble-Based Covariances
Monthly Weather Review, 2015, accepted
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Perspectives

Already done in the paper:

• Extension to vectorial hybridization weights:

δx = βe ◦δxe +βc ◦δxc

→ Requires the solution of a nonlinear system A(Lh,βc) = 0,
performed by a bound-constrained minimization.

• Heterogeneous optimization: local averages over subdomains

• 3D optimization: joint computation of horizontal and vertical
localizations, and hybridization coe�cients

To be done:

• Tests in a cycled quasi-operational con�guration

• Extension of the theory to account for systematic errors in B̃?

(theory is ready, tests are underway...)
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Thank you for your attention!

Any question?
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